From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning how to Active Learn: A Deep Reinforcement Learning Approach

Active learning aims to select a small subset of data for annotation such that a classifier learned on the data is highly accurate. This is usually done using heuristic selection methods, however the effectiveness of such methods is limited and moreover, the performance of heuristics varies between datasets. To address these shortcomings, we introduce a novel formulation by reframing the active...

متن کامل

Active Robotic Mapping through Deep Reinforcement Learning

We propose an approach to learning agents for active robotic mapping, where the goal is to map the environment as quickly as possible. The agent learns to map efficiently in simulated environments by receiving rewards corresponding to how fast it constructs an accurate map. In contrast to prior work, this approach learns an exploration policy based on a user-specified prior over environment con...

متن کامل

Active Learning

This article has no abstract.

متن کامل

APRIL: Active Preference Learning-Based Reinforcement Learning

This paper focuses on reinforcement learning (RL) with limited prior knowledge. In the domain of swarm robotics for instance, the expert can hardly design a reward function or demonstrate the target behavior, forbidding the use of both standard RL and inverse reinforcement learning. Although with a limited expertise, the human expert is still often able to emit preferences and rank the agent de...

متن کامل

Active Learning from Critiques via Bayesian Inverse Reinforcement Learning

Learning from demonstration algorithms, such as Inverse Reinforcement Learning, aim to provide a natural mechanism for programming robots, but can often require a prohibitive number of demonstrations to capture important subtleties of a task. Rather than requesting additional demonstrations blindly, active learning methods leverage uncertainty to query the user for action labels at states with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2021

ISSN: 1070-6631,1089-7666

DOI: 10.1063/5.0052524